To enable data type highlighting, right-click inside a node and choose Script Highlighting » Data Types.

5. Debugging Your Code Within the MathScript Node

You can perform in-node script debugging and use the MathScript probe to view intermediate variable values that are defined from within the node.

Using the MathScript Probe

Probes are invaluable tools for debugging LabVIEW applications because you can use them to see intermittent values. With the MathScript probe, you can debug your MathScript code by investigating unexpected results in the MathScript Node. You can use the probe to view the data in a MathScript Node as the VI runs. The probe displays a list of all variables you define in the script and previews variables you select. It also displays the output that MathScript generates from the script.
To view the MathScript probe, right-click inside a node and choose Probe (or just left-click over the node if the VI is running already).

Figure 11. Use the MathScript probe to view intermittent script values when debugging your .m file code.

Using Breakpoints, Single Stepping, or Execution Highlighting in the MathScript Node

The MathScript Node also includes full debugging capabilities, including the following:
The gray region on the left side of the MathScript Node, used to interact with these tools, displays the following:

Figure 12. The gray region on the left side of the MathScript Node is used for debugging techniques such as setting breakpoints.

Just like breakpoints in graphical code, the block diagram brings the specific line of code where the breakpoint exists into key focus, and the VI pauses. You can then execute single stepping and execution highlighting using the appropriate buttons on the LabVIEW toolbar. The error list window also lists the lines of code where an error exists. When you select the error within this window and click the Show Error button, LabVIEW highlights the line of script that contains the error.

6. What Does This Yellow “Exclamation Point” Glyph Mean?

The LabVIEW MathScript RT Module is engineered for optimal performance in a real-time OS. Unlike most .m file environments, the MathScript Engine takes the loosely typed .m file language and strictly types it within the context of the LabVIEW graphical environment for efficient data type propagation throughout the underlying code. This strict typing ensures that LabVIEW can efficiently compile the text-based MathScript code for edit-time semantic and syntax error handling as well as in-node context help. The MathScript Engine does a significant amount of work at “edit time” within the LabVIEW development environment. There is a subset of functions that, when included in a script, prevent the compiler from statically compiling the script. These include functions such as load, path, cd, and addpath, which introduce syntax not included in the node.
If you call these functions from a MathScript Node or a user-defined function, a warning glyph appears in the MathScript Node next to the line from which you call the function.

Figure 13. A warning glyph appears next to lines containing function calls that cause the MathScript Engine to execute with slower run-time performance.

The warning glyph indicates that LabVIEW operates with reduced error checking and slower run-time performance for the MathScript Node. To improve the error checking and optimize the performance of the MathScript Node, remove this function from scripts and user-defined functions. Also, do not change the MathScript search path list at run time. Instead, use the MathScript Options page to configure the default search path list for MathScript Nodes in the main application.
LabVIEW
Developer(s)National Instruments
Initial release1986; 33 years ago
Stable release
LabVIEW NXG 3.1
LabVIEW 2019
/ May 2019; 1 month ago
Written inC, C++, .NET
Operating systemCross-platform: Windows, macOS, Linux
TypeData acquisition, instrument control, test automation, analysis and signal processing, industrial control, embedded system design
LicenseProprietary
Websitewww.ni.com/labview
Laboratory Virtual Instrument Engineering Workbench (LabVIEW)[1]:3 is a system-design platform and development environment for a visual programming language from National Instruments.
The graphical language is named 'G'; not to be confused with G-code. Originally released for the Apple Macintosh in 1986, LabVIEW is commonly used for data acquisition, instrument control, and industrial automation on a variety of operating systems (OSs), including Microsoft Windows, various versions of Unix, Linux, and macOS.
The latest versions of LabVIEW are LabVIEW 2019 and LabVIEW NXG 3.1, released in May 2019.[2]

Dataflow programming[edit]

The programming paradigm used in LabVIEW, sometimes called G, is based on data availability. If there is enough data available to a subVI or function, that subVI or function will execute. Execution flow is determined by the structure of a graphical block diagram (the LabVIEW-source code) on which the programmer connects different function-nodes by drawing wires. These wires propagate variables and any node can execute as soon as all its input data become available. Since this might be the case for multiple nodes simultaneously, LabVIEW can execute inherently in parallel.[3]:1–2Multi-processing and multi-threading hardware is exploited automatically by the built-in scheduler, which multiplexes multiple OS threads over the nodes ready for execution.

Graphical programming[edit]

LabVIEW integrates the creation of user interfaces (termed front panels) into the development cycle. LabVIEW programs-subroutines are termed virtual instruments (VIs). Each VI has three components: a block diagram, a front panel, and a connector pane. The last is used to represent the VI in the block diagrams of other, calling VIs. The front panel is built using controls and indicators. Controls are inputs: they allow a user to supply information to the VI. Indicators are outputs: they indicate, or display, the results based on the inputs given to the VI. The back panel, which is a block diagram, contains the graphical source code. All of the objects placed on the front panel will appear on the back panel as terminals. The back panel also contains structures and functions which perform operations on controls and supply data to indicators. The structures and functions are found on the Functions palette and can be placed on the back panel. Collectively controls, indicators, structures, and functions are referred to as nodes. Nodes are connected to one another using wires, e.g., two controls and an indicator can be wired to the addition function so that the indicator displays the sum of the two controls. Thus a virtual instrument can be run as either a program, with the front panel serving as a user interface, or, when dropped as a node onto the block diagram, the front panel defines the inputs and outputs for the node through the connector pane. This implies each VI can be easily tested before being embedded as a subroutine into a larger program.
The graphical approach also allows nonprogrammers to build programs by dragging and dropping virtual representations of lab equipment with which they are already familiar. The LabVIEW programming environment, with the included examples and documentation, makes it simple to create small applications. This is a benefit on one side, but there is also a certain danger of underestimating the expertise needed for high-quality G programming. For complex algorithms or large-scale code, it is important that a programmer possess an extensive knowledge of the special LabVIEW syntax and the topology of its memory management. The most advanced LabVIEW development systems offer the ability to build stand-alone applications. Furthermore, it is possible to create distributed applications, which communicate by a client–server model, and are thus easier to implement due to the inherently parallel nature of G.

Widely-accepted design patterns[edit]

Applications in LabVIEW are usually designed using well-known architectures, known as design patterns. The most common design patterns for graphical LabVIEW applications are listed in the table below.
Common design patterns for LabVIEW applications
Design patternPurposeImplementation detailsUse casesLimitations
Functional Global VariableExchange information without using global variablesA shift register of a while loop is used to store the data and the while loop runs only one iteration in a 'non-reentrant' VI
  • Exchange information with less wiring
  • All owning VIs are kept in memory
State machine[4]Controlled execution that depends on past eventsCase structure inside a while loop pass an enumerated variable to a shift register, representing the next state; complex state machines can be designed using the Statechart module
  • User interfaces
  • Complex logic
  • Communication protocols
  • All possible states must be known in advance
Event-driven user interfaceLossless processing of user actionsGUI events are captured by an event structure queue, inside a while loop; the while loop is suspended by the event structure and resumes only when the desired events are captured
  • Graphical user interface
  • Only one event structure in a loop
Master-slave[5]Run independent processes simultaneouslySeveral parallel while loops, out of which one functions as the 'master', controlling the 'slave' loops
  • Simple GUI for data acquisition and visualization
  • Attention to and prevention of race conditions is required
Producer-consumer[6]Asynchronous of multithreaded execution of loopsA master loop controls the execution of two slave loops, that communicate using notifiers, queues and semaphores; ability)??1995
LabVIEW 4.0??April 1996
LabVIEW 4.1??1997
LabVIEW 5.0??February 1998
LabVIEW RT (Real Time)??May 1999
LabVIEW 6.0 (6i)6.0.0.400526 July 2000
LabVIEW 6.16.1.0.400412 April 2001
LabVIEW 7.0 (Express)7.0.0.4000April 2003
LabVIEW PDA module first released??May 2003
LabVIEW FPGA module first released??June 2003
LabVIEW 7.17.1.0.40002004
LabVIEW Embedded module first released??May 2005
LabVIEW 8.08.0.0.4005September 2005
LabVIEW 8.20 (native Object Oriented Programming)??August 2006
LabVIEW 8.2.18.2.1.400221 February 2007
LabVIEW 8.58.5.0.40022007
LabVIEW 8.68.6.0.400124 July 2008
LabVIEW 8.6.18.6.0.400110 December 2008
LabVIEW 2009 (32 and 64-bit)9.0.0.40224 August 2009
LabVIEW 2009 SP19.0.1.40118 January 2010
LabVIEW 201010.0.0.40324 August 2010
LabVIEW 2010 f210.0.0.403316 September 2010
LabVIEW 2010 SP110.0.1.400417 May 2011
LabVIEW for LEGO MINDSTORMS (2010 SP1 with some modules)August 2011
LabVIEW 201111.0.0.402922 June 2011
LabVIEW 2011 SP111.0.1.40151 March 2012
LabVIEW 201212.0.0.4029August 2012
LabVIEW 2012 SP112.0.1.4013December 2012
LabVIEW 201313.0.0.4047August 2013
LabVIEW 2013 SP113.0.1.4017March 2014[13]
LabVIEW 201414.0August 2014
LabVIEW 2014 SP114.0.1.4008March 2015
LabVIEW 201515.0f2August 2015
LabVIEW 2015 SP115.0.1f1March 2016
LabVIEW 201616.0.0August 2016
LabVIEW 201717.0f1May 2017
LabVIEW 2017 SP117.0.1f1Jan 2018 [14]
LabVIEW 201818.0May 2018
LabVIEW 2018 SP118.0.1Dec 2018
LabVIEW 201919.0May 2019

Repositories and libraries[edit]

OpenG, as well as LAVA Code Repository (LAVAcr), serve as repositories for a wide range of Open Source LabVIEW applications and libraries. SourceForge has LabVIEW listed as one of the possible languages in which code can be written.
VI Package Manager has become the standard package manager for LabVIEW libraries. It is very similar in purpose to Ruby's RubyGems and Perl's CPAN, although it provides a graphical user interface similar to the Synaptic Package Manager. VI Package Manager provides access to a repository of the OpenG (and other) libraries for LabVIEW.
Tools exist to convert MathML into G code.[15]

Related software[edit]

National Instruments also offers a product named Measurement Studio, which offers many of the test, measurement, and control abilities of LabVIEW, as a set of classes for use with MicrosoftVisual Studio. This allows developers to harness some of LabVIEW's strengths within the text-based .NET Framework. National Instruments also offers LabWindows/CVI as an alternative for ANSI C programmers.
When applications need sequencing, users often use LabVIEW with TestStand test management software, also from National Instruments.
The Ch interpreter is a C/C++ interpreter that can be embedded in LabVIEW for scripting.[16]
Labview Mathscript Module
The TRIL Centre Ireland BioMobius platform and DSP Robotics' FlowStone DSP also use a form of graphical programming similar to LabVIEW, but are limited to the biomedical and robotics industries respectively.
LabVIEW has a direct node with modeFRONTIER, a multidisciplinary and multi-objective optimization and design environment, written to allow coupling to almost any computer-aided engineering tool. Both can be part of the same process workflow description and can be virtually driven by the optimization technologies available in modeFRONTIER.

See also[edit]

References[edit]

  1. ^Jeffrey., Travis, (2006). LabVIEW for everyone : graphical programming made easy and fun. Kring, Jim. (3rd ed.). Upper Saddle River, NJ: Prentice Hall. ISBN0131856723. OCLC67361308.
  2. ^'LabVIEW NXG: Version 3.1 Readme'. Manuals. National Instruments.
  3. ^Bress, Thomas J. (2013). Effective LabVIEW Programming. [S.l.]: NTS Press. ISBN1-934891-08-8.
  4. ^'Application Design Patterns: State Machines'. National Instruments whitepapers. 8 September 2011. Archived from the original on 22 September 2017. Retrieved 21 September 2017.
  5. ^'Application Design Patterns: Master/Slave'. National Instruments whitepapers. 7 October 2015. Archived from the original on 22 September 2017. Retrieved 21 September 2017.
  6. ^'Application Design Patterns: Producer/Consumer'. National Instruments whitepapers. 24 August 2016. Archived from the original on 22 September 2017. Retrieved 21 September 2017.
  7. ^'3rd Party Instrument Drivers - National Instruments'. www.ni.com. Archived from the original on 2014-11-28.
  8. ^'LabVIEW MathScript RT Module'. www.ni.com. Archived from the original on 2016-08-05.
  9. ^'LabVIEW Home Bundle for Windows - National Instruments'. sine.ni.com. Archived from the original on 2016-07-04.
  10. ^'Archived copy'. Archived from the original on 2016-10-28. Retrieved 2016-10-28.CS1 maint: Archived copy as title (link)
  11. ^'Software Configuration Management and LabVIEW - National Instruments'. www.ni.com. Archived from the original on 2016-10-29.
  12. ^'Configuring LabVIEW Source Code Control (SCC) for use with Team Foundation Server (TFS) - National Instruments'. www.ni.com. Archived from the original on 2016-10-28.
  13. ^'What's New in NI Developer Suite - National Instruments'. www.ni.com. Archived from the original on 2014-03-31.
  14. ^'LabVIEW 2017 SP1 Patch Details - National Instruments'. www.ni.com. Retrieved 2018-05-28.
  15. ^'Math Node - A new way to do math in LabVIEW'. ni.com. 25 October 2010. Archived from the original on 25 February 2011.
  16. ^'Embedding a C/C++ Interpreter Ch into LabVIEW for Scripting'. iel.ucdavis.edu. Archived from the original on 2011-05-15.

Further reading[edit]

Labview

Articles on specific uses[edit]

Articles on education uses[edit]

External links[edit]


You can from here. It is free software to make beats. Best beat making softwares. Musink Lite Musink Lite is another best free beat making software for windows only which allows users to compose music easily with few clicks.
Retrieved from 'https://en.wikipedia.org/w/index.php?title=LabVIEW&oldid=901221774'